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CONVERGENCE OF THE TWO-POINT 
UPSTREAM WEIGHTING SCHEME 

MARIE-CLAUDE VIALLON 

ABSTRACT. Convergence to the entropy solution of a second-order scheme for 
the resolution of scalar hyperbolic conservation laws is studied. We consider 
the case of the so-called two-point upstream weighting scheme, widely used in 
petroleum engineering, to solve fluid flows in porous media problems. We prove 
convergence of the two-point upstream weighting scheme to the entropy solution 
for both discrete and semidiscrete approximations. 

INTRODUCTION 

Recently, much research has been done to solve hyperbolic conservation laws 
by the use of high-order numerical schemes. However, the two-point upstream 
weighting scheme [8, 9, 13, 1, 2], which is a second-order finite difference 
scheme, was used in petroleum engineering for some twenty years without, 
to our knowledge, any mathematically rigorous theory (except indications of 
linear stability [2]). Several variants have already been numerically tested for 
fluid flows in porous media problems (saturation or concentration equation) 
and give excellent results. The goal of this paper is to prove convergence of 
the two-point upstream weighting scheme to the entropy solution of the fully 
discrete and semidiscrete (that is to say, continuous in time) versions. 

It is worth noticing that, in the fully discrete case, the convergence is obtained 
under sharp CFL conditions; and in the semidiscrete case, the convergence is 
proved thanks to the fact that the numerical flux of the scheme is globally 
Lipschitz under monotonicity and regularity assumptions. 

1. PRELIMINARIES 

We consider the scalar hyperbolic conservation law 

(I. 1) ut+(f(u)),=0 withXER, andtE[O,T), T>O, 

with initial condition u(x, 0) = uo(x). 
We assume f E C2 and smooth initial data. It is well known, however, that 

solutions of (1.1) may be discontinuous, and we have to define a weak solution 
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of (1.1): 

Eu EL c(R [O, T)), 

(1.2) Vi F Co (R x[O ,T)), 

f fRT f(u t + f(u)(ox) + fR uO(x)(o(x, 0) dx = 0. 
Solutions of (1.2) are not necessarily unique, and we are interested in the 

physical one, the so-called entropy solution, that is characterized by the Lax 
entropy condition 

(1.3) (U(u))t + (F(u))x < 0 in the weak sense 

for all entropy pairs (U, F) associated with (1.1), where U is convex. 
For scalar convex conservation laws whose solution is of bounded variation, 

R. J. Di Perna [3] proves it is sufficient that the Lax entropy condition be 
satisfied for a single strictly convex entropy function U. 

We now define a fully discretized conservative and consistent finite difference 
scheme: Let Ax be the space step, At be the time step, and A be the ratio 
At/Ax. We decompose the interval [0, T) into L (integer) subintervals jn = 
[tn, tn+1), with n E N and n = 0,...., L- 1, where tn nAt (we assume 
T = LAt). We decompose the real axis into intervals Ii = (xi-112, xi+112), 

where xi~112 = X + Ax/2 and xi = iAx, for i E Z. We denote by uin an 
approximation of the average value of the solution u in Ki =I x jn. A 
conservative and consistent fully discretized and explicit finite difference scheme 
is 

(1.4) Un+1 = un -_ (gn 1/2-g71/2)' 

where gi+1/2 = g(u7n1, .i.k . , uIn), g being the numerical flux of the scheme, 
assumed to be continuous, such that g(u, ..., u) = f(u). 

We assume uO E Llc(IR) and we choose ui = d(fII uO(x) dx), i E Z. The 
approximate solution of (1 .1), denoted by uA(x, t) , is then a piecewise constant 
function defined by uA(x, t) = un if (x, t) E K . 

Next we define a semidiscretized conservative and consistent finite difference 
scheme: We discretize the real axis as above, and for all t E [0, T), we denote 
by ui(t) an approximation of the average value of the solution in the interval 
Ii . A conservative and consistent semidiscrete scheme is a system of differential 
equations 

(1.5) du. 1) 
dt + -x(gi+1/2 - gi-1/2) = 0 

where gi+/2 = g(Ui-k+l a , Ui+k), g being continuous, such that 
g(u,... ,U)= f(u). 

We assume u E L Ic(IR) and we define ui(O) = i(fI uO(x)dx), i E Z. 
The approximate solution is the step function uA,(x, t) = ui(t) when x E Ii, 
with t E [O. T). 
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The two-point upstream weighting scheme has the following property: it is 
a conservative and consistent finite difference scheme, fully determined by its 

DA numerical flux denoted by f . We shall prove that the sequence (uA) com- 
puted by the scheme converges to a weak solution of (1.1) as the discretization 
step Ax tends to zero. Then we prove that this weak solution is the unique 
entropy solution by establishing an entropy inequality. 

We consider separately the fully discrete case and the semidiscrete case. 

2. DEFINITION OF THE NUMERICAL FLUX A 

In order to approach the value of the flux at the point xi+112, the scheme 
calculates an approximation of u(xi+112) by using a linear interpolation con- 
structed on ui 1 and ui if the flow comes from i to i + 1, and on ui+2 and 
ui+1 otherwise. 

UA1 
I 

Ui^F~~~~~~~~~I I 

Xi-l/2 xi+2-1/2 Xi+1/2 

FIGURE 1 FIGURE 2 

In petroleum engineering, where this scheme is widely used, the flow direction 
is easily determined by physical considerations. That is why, out of this context, 
to define the flow direction, we will proceed in a more general way, by using the 
Godunov flux fG, denoting J+1/2 = f(Ui+l, ui) 

The flow is coming from i to i + 1 if ;+1/2 = f(Ud 

coming from i + 1 to i, if +1/2 = f(Ui+l) 

I else the direction of the flow is undetermined. 
Then we define the linear interpolate f4+1/2 and 2ui+l/2 by 

(2.2) { ui+1/2 = i - I if t+112 = P(i), 

^Yi+-/2 2 i+1 - 2 i+2 if i+1/2 = f(Ui+l) 

if the direction of the flow is well determined. A natural solution when the 
direction of the flow is undetermined is to use the Godunov scheme and to 
define DA 

=_ 1+1/2 
= 

fi+1/2' 

Finally, a slope limiter has to be introduced in order to keep the monotonicity 
of the solution. That is to say, we must enforce the interpolates to be located 
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between ui and ui+l . We define the corrected interpolate -Ui+1/2' associated 
with a flow coming from the left, in the following way: 

J min(u i+1/2, ui+1) if U i,1 <i U ?i+1 

(2.3) =i+1/2 max(i i+112, ui+1) if ui+,1 <i Ui ui- 

1i else. 
(We define the corrected interpolate Ui+ 1/2, when the flow comes from the right, 
in the same way.) 

The flux DA could be chosen equal to f(Ui~12) or f(ui~112) according 
to the direction flow. But it is better to consider Ui+1/2 (ui) as the left value at 

Xi+1/2 and ui+l (ui+1/2) as the right value at Xi+1i2 to solve the associated 
Riemann's problem, if the flow comes from the left (right). This gives rise to 
the definition of ID2: 

_t D { 
(ui+l, ui+1/2) if f (i+, 

ui) 

= PUj) 

(2 )A t~z/2 = 1 fG(Ui+1/2 ui) if fG(Ui+ , u1) f(Ui+l) 

P ,i+112) if fG(ui+1 ui) = f(4i+2) f {f(Ui), f(ui+1)}. 

The two-point upstream weighting scheme is a five-point scheme in one di- 
mension. 

The scheme is second-order accurate in space, away from the discontinuities 
(see [1, 2, 9]), in smooth parts of the solution. For instance, if f is increasing, 

writing f(ii+1/2) = f(ui + 2(ui - uj 1)) and using Taylor series expansion, 
allows one to prove that 

1 ADA.n DA n 1 f n A n 
^;C (J+1i/2 - i-1/2) = X(f(7i+1/2) - f(i- 1/2)) 

= a (f(u(xi , t ))) + Axe(/(AX). 

But it is worth noticing that the scheme is only first-order accurate in time. 
As far as the convergence of the scheme is concerned, the only theoretical 

result we have is a stability study when f(u) = u [2], using von Neumann's 
method. It is proved in [2] that the two-point upstream weighting scheme can 
be considered as "stable" under the condition A < 2/3. 

PART I. CONVERGENCE OF THE FULLY DISCRETE 
TWO-POINT UPSTREAM WEIGHTING SCHEME 

TO THE ENTROPY SOLUTION 

3. CONVERGENCE TO A WEAK SOLUTION 

A standard way to prove the convergence of the scheme (1.4) to a weak 
solution is (assuming u0 E L1 (IR) n B V(TR)) to verify that the total variation of 
the computed solution is decreasing (TVD), that is to say, for n = 0, ... , L- 1: 

(3.1) VTt ( t n+1)) = lun+1 _ 
Uin+1I < V T(u.(5 tn)), 

iEz 
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that the scheme is L??-stable, that is to say, there exists a constant C(uo) > 0 
which depends only on the initial condition uo such that 

(3.2) uA(., t) L(R) = sup ._ ui I ? C(uo) for all t E [O, T) 
iE7Z;n=O,...L- 

and the numerical flux is "locally Lipschitz (see [11]), that is to say, there 
exists a constant C, depending only on the scheme's L??-stability boundedness, 
such that 

(3.3) Igi+1/2- gi-1/21 < CHl(ui-k+l ' Ui+k)- (ui-k . , Ui+k-1)IR2k 

We use A. Harten's approach [4] to prove that a finite difference scheme (1.4) 
is TVD. We have to write the scheme in incremental form, that is to say, finding 
functions C and D such that 

(3.4) ~g+112 - gi-1/2) =-Ci+112( i+1- ) + Di-1/2(u i- u_) 

with 
Ci+/2 

= C(i-k+l ' 
, ui+7) and Di+ = D(u1ik+l ... , u7+), hence, 

with (3.4), the scheme (1.4) becomes 

(3.5) un+1 = un + C (u12(uI _- u) -Di_1/2(un -nU>) 

According to [4], the scheme (3.5) is TVD if Ci+112 > 0, Di+1/2 > 0, and 

Ci+112+ Di+112 < 1, for i E Z. It follows also from (3.5) that, if Ci+112 > 0. 

Di+112 > 0, and Ci+1/2 + Di_1/2 <1, for all i E Z, then we have the maximum 
principle 

(3.6) ViEZ, Vn=O, ... ,L-1, inf u<u1 < supui, iEZZ iEZ 

which proves that the scheme is L' -stable if we assume uo E L??O(R). 
Hence, the proofs of the convergence theorems stated below will be totally 

based on the determination of the incremental coefficients Ci+1/2 and Di+1/2. 

Theorem 3.1. If uo E L1(IR) n L??(IR) n BV(R), then for a convex function f, 
under the CFL condition A sup{ If'(ui), i E Z} I< , the fully discrete two-point 
upstream weighting scheme converges to a weak solution of the problem (1. 1). 

Theorem 3.2. If uo E L1(IR) n L??(R) n BV(IR), then for a monotone function 
f, under the CFL condition A sup If' < 2, the fully discrete two-point upstream 
weighting scheme converges to a weak solution of the problem (1. 1). 

Remark 1. We remark that we obtain sharp CFL conditions for convergence, 
probably because the scheme is second-order accurate in space (except near 
critical points). It is worth noticing that the assumption of monotonicity of f 
gives a CFL condition two times the CFL condition associated with a convex 
function; the result of Theorem 3.2 is consistent with the von Neumann stability 
condition given in [2]. 
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Remark 2. The case f monotone is the usual case in petroleum engineering 
simulations. 

4. PROOF OF THEOREMS 3.1 AND 3.2 

Stating the incremental decomposition of the two-point upstream weighting 
scheme, we seek the coefficients Ci+1/2 and Di+ 1/2 'We prove they are positive, 
they satisfy Ci+,12 +Di_1/2 < 1 under the CFL condition, and they depend only 
on the scheme's L??-stability boundedness. To bound Ci+112 and Di+1/2, we 

have to first establish a lemma. (Because of complexity of notation, we will in 

the following omit the exponent n.) 

4.1. Preliminary computation. 

Lemma 4.!. The four ratios 

9i+1/2 - ui-1/2 ui+1/2 - 
Ui-i i+1/2 - !{i-1/2 Ui+- I 1iI2 

Ui-UI Ui-UI ' i+l i i+l Ui 

are always located between 0 and 3 
2 

The proofs being analogous, we will do the demonstration only for the first 
ratio, which will be denoted by Qi: 

(a) If (u i-, Ui, ui+1) is not monotone, then (2.3) implies that Ui+1/2 = Ui 
and Q. E [O. 1]. 

(b) If (ui-, ui, u+ 1) is monotone, we see with (2.3) that Qi > 0, but in 

order to prove Qi < 3 
, we have to consider separately the cases U,1 <u,? u,+ 

and u,+l < ui < uiI I We detail only the first one: 

Q = min(iy 12, ul 1) - 1/2 (see (2.3)) 

Ui 
- 

Ui_ 

< ui+1/2 ui-1/2 = 12 i- i /2 (see 

< 
3 

(because Ui-1/2 E [Ui1 UJ]). E 

4.2. Incremental decomposition. According to the notation (3.4), we have to 

find the incremental decomposition corresponding to the expression denoted 

[D A i+112 
- i- 1/2) 

Let us start with the proof of Theorem 3.1: there are three possible definitions 

of the flux fDA according to the value of 
fG(Ui+1/2 ui) (see (2.4)). For the 

sake of simplicity, we will describe only two cases among the nine total cases. 

The proof in the other cases is straightforward. 

(a) First case: fG(ui, Ui 1) = f(ui 1) and fG(u1i+, ui) = f (ui) . Then 

[D] = )L(f G(u i+ u Si+112) - fG(U u h-1/2)) 

= -(ui+I - Ui)[D1 1] + (Ti+1/2 
- 

ai- /2)[D 2] 
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with 

[DII] = A fG(Ui 'u1i+/2) - fG(Ui+l ui+1/2) 

Ui+1 Ui 

[D12] = A -fG(Ui ' 'i+1/2) 
- 

fG(Ui ' U~i-1/2) 

ui+ 112 - ui- 12 

Since the Godunov flux is increasing, we have [D I] > 0 and [D 12] > 0; there 
exists 0 E I(u, v) such that fG(u, v) = f(0); this allows us to bound [DII 
and [D12] by 

{ [Dill A<Af'(0j)J with o EI(ui ui+j), 

[D12] < AIf'(02)1 with 02 E I(1i-1/2 ' ui+1/2) C I(ui-I ' Ui ' Ui+l) , 

because ui E I(Ii-1/2' ui+1/2). Then, as in (3.4), we define the coefficients 

Ci+ 1/2 and Di- 1/2 by 

Thi+l/2 U -ii12 
Ci+112 

= [D 1 ] Di- 1/2 =-u/ IU 
[D 1 2]. 

Lemma 4.1 gives the following bounds: 

(4.1) | <Ci+1/2<)'SUP11f'(U)1 UEI(ui5ui+j)j5 

0 < Di-112 < 23ASUP{|1 (U)l 5 U E I(Ui-l ' Ui ' Ui+l)I} 

(b) Second case: fG(i, Uiu1) = f(ui) and fG(ui+1,Ui) = f(4i+112) 0 
{f (ui), f(ui+ )}. Then 

[D] = Nf((i+1/2) - f (Yi- /2 ' Ui-. )) 

Here, the assumption of convexity on f is essential to obtain ui < li+1/2 < Ui+1 

from the property fG(ui+l, ui) 0 {f(ui), f(ui+1)}. In order to decompose 
[D], we have to consider the two cases ui < ui, and ui-1 < ui . By using the 
same kind of arguments as above, we find when ui < uiI: 

(4.2a) 0 < Ci+112 < sup{Af'(u)l, ueI(ul, u1)}, Di-1/2 = 0 

and when ui, <Ui: 

(4.2b) 0? C,~1I2 < -Isup{ f(u)l, u E I(ui-l, ui, ui1)}, Di-12 = 0. 

Finally, by taking into account the nine possible majorations of Ci+112 and 

Di+112, we obtain 

(4.3) 
~0 < Ci+ 1/2 < 32A SUPI I f (U) 1 5 U E I(Ui- 1 ' Uj ' Ui+l )} ' 

0 < Di- 1/2 < 23 SUPI Ir (U)|, U E I(Ui-l ' Ui ' Ui+1)} ' 

which implies 

Ci+1/2 + Di?/2 < 3A sup If' 1 
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Moreover, since f is convex, If' is piecewise monotone and reaches its upper 
bound on the interval I(ui-1, ui, ui+1) at the boundaries (the values (ud)iz). 
Hence, we have the inequality 

Ci+ 12 + Di?1/2 < 3 sup lf'(u )j. 
iEZZ 

Under CFL condition A supie 5f'(ut) < 3 it follows from the above results 
that the two-point upstream weighting scheme is TVD and L?-stable. 

According to the property (4.3), the incremental constants are only depending 
on the L?-stability majoration of the scheme, which proves, with (3.4), that 
the flux fDA is "locally Lipschitz * ." 

The proof of Theorem 3.2 is similar to the proof above, but since f is 
assumed monotone, the definition of the numerical flux fDA becomes simpler: 

DAiseultf(1 12is equal to f(i/2) if f is increasing, or f(ui+ 1/2) if f is decreasing. 
If we assume, for instance, that f is increasing, A(f(i+ 1/2) - f (i-1 /2)) is 

the only possible value of [D], and similarly to the computations done in (4.2a), 
we find in (4.1) and in (4.3) that Ci+ 12 = [DII ] = 0, which finally leads to 

Ci+ 1/2 + Di?112 < 23A SUP 1X1I 

Thus, we have a CFL condition which is two times less restrictive than the 
previous one. 

5. CONVERGENCE TO THE ENTROPY SOLUTION 

In order to prove that the weak solution u obtained in Theorems 3.1 and 
3.2 is the entropy solution, we must verify the Lax entropy condition (1.3) for 
all entropy convex U(u). It is well known that this is satisfied whenever the 
scheme is consistent with the entropy condition for all convex entropy functions 
U. We prove the two following theorems. 

Theorem 5.1. If uo E L'(IR) n L??(R) n BV(IR), then for a convex function f, 
under the CFL condition A sup{ fI(uj)j, i E Z} < 3, by using a slope limiter de- 
pending on the space step, the fully discrete two-point upstream weighting scheme 
converges to the entropy solution of the problem (1.1) . 

Theorem 5.2. If uo E L1 (R) n L?? (R) n B V(R) , then for a monotone function f, 
under the CFL condition A sup If'j < 2, by using a slope limiter depending on 
the space step, the fully discrete two-point upstream weighting scheme converges 
to the entropy solution of the problem (1.1) . 

6. PROOF OF THEOREMS 5.1 AND 5.2 

Convergence to the entropy solution is easily obtained by enforcing the 
scheme to be sufficiently close to an entropic scheme (that is to say, a scheme 
that is consistent with the entropy solution), as in [5], by means of a slope 
limiter. 
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Applying convergence results of [12], we have convergence to the entropy 
solution as soon as the scheme can be written in the form 

Un+1 n+1 n n 
= - (ai+112 -a -12 

(6.1) - n+i = 
_A -( -n 

U ' in 1 _ gi ) 

where a7n112 is a numerical flux going to zero when the space step Ax tends 
to zero (for instance, a7n1121 < Cnxa, with a E (O, 1), and C a constant 
independent of Ax), and n is a monotone flux. 

In the case of the two-point upstream weighting scheme, we choose aln112 = 

A~DA n - fl\\ 1 U and f ; 
it+j/2n_ fUin+lS Ui )) and i/g 2 = 1/2 which is obviously monotone. 

The only condition to be verified is then la7ni+/21 < CAx , which is satisfied 
under the following slope limiter: 

I6a{ - uj < C(Ax)a when fG(ui+l, ui) =5 

lui+1/2 - U-+l I< C(Ax)a when fG(ui+l, Ui) = f(Ui+l) 
for both Theorems 5.1 and 5.2. 0 

Remark. The condition lai+1121 < CAxa is a slope limiter depending on the 
space step Ax, which could be rather restrictive when Ax tends to zero (except 
if we are in a smooth region of the solution, because then lai+1121 = O(Ax)). 
However, in numerical computations, if Ax is fixed, this slope limiter will never 
be active because there exists a sufficiently small a such that the inequality is 
always verified. 

PART II. CONVERGENCE OF THE SEMIDISCRETE 
Two-POINT UPSTREAM WEIGHTING SCHEME 

TO THE ENTROPY SOLUTION 

7. CONVERGENCE TO A WEAK SOLUTION 

The semidiscrete scheme (1.5) is an infinite-dimensional differential system 
(because i E Z ). We have to prove the existence of a solution, and then, to 
prove that this solution is a weak solution. 

The most important problem about proving existence of a solution of (1.5) 
is to have a globally Lipschitz numerical flux and to have u belonging to a 
suitable Banach space in order to apply the Cauchy theorem. First we prove 
(Lemma 8.1) that the flux fDA is globally Lipschitz under monotonicity and 
regularity assumptions. Next, we exhibit a sufficient condition on the initial 
data uo to reduce the general semidiscrete scheme (1.5) to the resolution of a 
finite-dimensional differential system, 

(7.1) i { Cd if i > Id 

where Cg and Cd are constants and Ig < Id. Then, assuming the numerical 
flux associated with the scheme (1.5) is globally Lipschitz, we apply the Cauchy 
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theorem to prove (Lemma 8.2) the existence of a solution (uI)IEz verifying the 
same kind of property as uo in (7.1). 

Remark. The assumption (7.1) with Cg = C) = 0 means that u0 has compact 
support, which is a very classical hypothesis that allows one to solve Riemann's 
problems. 

Finally, we give sufficient conditions for the solution of (1.5) to be a weak 
solution, that is to say, for the scheme to be TVD (Lemma 8.3) and L?-stable 
(Lemma 8.4). 

Applying these lemmas to the two-point upstream weighting scheme, we then 
prove: 

Theorem 7.1. If uo E L1 (R) n B V(R), and assuming: 

- u0 satisfies (7.1), 
- the function f is monotone and f'I is bounded, 

then the semidiscrete two-point upstream weighting scheme converges to a weak 
solution of the problem (1. 1) . 

8. PROOF OF THEOREM 7.1 

After proving the preliminary lemmas, we will conclude the proof in ?8.3. 

8.1. Conditions on f for the flux fDA to be globally Lipschitz. 

Lemma 8.1. If the function f is monotone, and if IfIl is bounded, then the 
numerical flux fDA is globally Lipschitz. 

The flux fDA is (globally) Lipschitz if there exists a constant C > 0 such 
that 

VU(Ui- I UiI Ui+1 , Ui+2) E R , V(Vi-l ' V i I Vi+l I Vi+2) E R 

IfDA (U) _ f DA(V) I < CIIU - VII24. 

Proof of Lemma 8.1. In [10], it is proved that fDA is not globally Lipschitz 
if fG(ui+l, uj) ? {f(ui), f(ui+ )}. By removing this possibility, we are led to 
assume that f is monotone. To simplify the proof, we assume in the following 
that the function f is increasing. We are going to prove that 

If (U) -f (V)I = If(Hi+112) -fVi+ 1/2)1 

< IUi+l/2 - -i+21 * sup{jf(u)j, U E I(ii+1/2' vi+11}2) 

< 21jU - V11R4 * sup{jf'(u)j, u I(Ui Ui+ ' Vi ' Vi+1)} ' 

which will prove Lemma 8.1 thanks to the assumption on jf'l. 
In order to prove the above inequalities, we need only verify that [d] = 

Iai+l/2 - Vi+l1/21 < 21j U- VjjR4 . 
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There are three possible definitions of Ui+1/2 and vi+,12, and nine values of 
the difference. We detail the case u11 ? ui u1 ui+1 and v11 ? vi ? vi+ (the 
other cases of (2.3) are straightforward). Then 

[d] = I min{ui+ 1 /2, 5u+1 } - min{vi+1 /2, Vi+1}1. 

If Uji+I/2 ui+ and Vji+/2 < vi+l , then 

[d] = I~i+1/2 - vi+l/21 = I' i - ui-1 - 2v1 + vi-1I 

- 2 li -Jil+ 2 lui-i - Vi-1 I < 211 U - VII. 

If Ui+1/2 < ui+1 and vi+4 < vi+1/2, then 

[d] = IUi+ 1/2 -Vi+ II1 i+1/2 i- v+1 (if vi+1 i u+1 /2) 

< ui+1 - Vi+i < 11 U - Viia 

If u1+1 < ui+,/2 and vi+1/2 < vi+1, then 

[d] = 1ui+ 1 - /21 = Ui+1 - ii+ 1/2 (if Vi+l/2 < ui+l) 

i+1/2 
- Vi+2 ? 221U - VII (see above). 

If u <i+ and vi+I < ?i+ 1/2' then 

[d] = 1uj+1 - vi+l I < 11 U - VII. a 

8.2. Existence of a solution of (1.5). 

Lemma 8.2. If uo satisfies property (7.1) and if the numericalflux g is globally 
Lipschitz, then the differential system associated with the scheme (1.5) has a 
solution satisfying 

(8.1) UP~t) ={ Cg if i 
< 

Idg+ k, 

where 2k is the number of arguments in the numericalflux g. 
Proof. Let (S) denote the subsystem of (1.5) obtained by taking into account 
the equations from i = Ig - k + 1 to i = Id+ k - 1 . Thanks to the Cauchy 
theorem, if the numerical flux g is Lipschitz, then (S) has a unique solution 
associated with the initial data uo. Extending this solution by uj(t) = Cg if 
i<Ig-k and ui(t)=Cd if i>Id+ k, undertheassumption (7.1) on uo, the 
new sequence (uj)jcz is a solution of (1.5) (because the flux g is consistent) 
that satisfies (8.1). E 

Remark. We prove in [10] the existence and uniqueness of the solution of the 
infinite-dimensional system without using the assumption (7.1), but we are led 
to assume that the scheme is TVD. 
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8.3. Sufficient condition for the scheme (1.5) to be TVD and L?-stable. As 
we did in the fully discrete case, we use the following incremental form of the 
scheme (1.5): 

(8.2) -AX(gi+1/2 - gi-1/2) = -Cf+1/2(ui+l - ui) + Dl 112(ui - Ui-1) 

where C+/2 and D depend on (u1 k+1' ..., u4). Hence, with (8.2), 
the scheme (1.5) becomes 

(8.3) ~du,. )-D ( 8. 3) ddt' = Ci+l2(Ui+?1 - U D) - 112(Ui - Uil). 

Because of Lemma 8.2, we know that the solution of (1.5) satisfies (8.1), 
which reduces the total variation d Ei I ui+I(t) - ui(t)I to a finite series. Then 
the following holds. 

Lemma 8.3. If u0 satisfies property (7.1), and the scheme (1.5) can be written 
in incrementalform (8.3) with coefficients C5 > 0 and Ds > 0 then the 1+1/2 i- 1/2 - 

scheme is TVD. 

This is proved by applying a result of S. Osher and S. Chakravarthy [7] valid 
in finite dimensions: if a scheme (1.5) (with i describing a finite domain) can be 
written in incremental form (8.3) with coefficients CK112 > 0 and Ds 1/2> 0, 
then the scheme is TVD. 

Taking into account Lemma 8.3, it is easy to prove: 

Lemma 8.4. Under the assumptions of Lemma 8.3, if uo E BV(R), then the 
scheme (1.5) is L?-stable. 

Indeed, the scheme is TVD and property (8.1) implies 

ui = E(uj - uj-1) + Cg. 
j<i 

We prove easily that the two-point upstream weighting scheme can be written 
in incremental form with positive incremental coefficients by comparing the 
incremental forms in (3.4) and (8.2). As a matter of fact, the analogy between 
the couples (Ci+112, Di11/2) and (Cs+ 12, Ds- /2) allows us to take into account 

all the results of ?4 and to deduce that ClS112 > 0 and Ds112 > 0. 
Assuming that u0 satisfies (7.1) and u0 E B V(IR), we deduce from the lem- 

mas above that the two-point upstream weighting scheme is TVD and L?- 
stable. Because of Lemma 8.1, the flux fA is Lipschitz under the assumptions 
of Theorem 7.1. Applying now the same result as in the fully discrete case, 
we deduce that the two-point upstream weighting scheme converges to a weak 
solution as soon as we assume u0 E L1(R) n BV(IR) . a 

9. THEOREM OF CONVERGENCE TO THE ENTROPY SOLUTION 

Under the convergence to a weak solution hypothesis, if f is convex and, 
moreover, the solution has bounded variation, the consistency of the scheme 
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with the entropy condition (which implies the Lax entropy condition) associ- 
ated with a strictly convex function U, implies the convergence to the unique 
entropy solution. We prove: 

Theorem 9.1. If uo E L1(IR) nBV(R), if uo satisfies property (7.1) and, if the 
function f is convex monotone and If'I bounded, then, by using a slope limiter 
independent of the space step, the semidiscrete two-point upstream weighting 
scheme converges to the entropy solution of the problem (1.1) . 

10. PROOF OF THEOREM 9.1 

To prove that the scheme is consistent with the Lax entropy condition, we 
have to verify the following entropy inequality: 

(10.1) d U(ui) + L (Gi+1/2 - Gi11/2) < 0, 

where G is a continuous function, Gi+,12 denotes G(uik+ .., u+k), and 
G is such that G(u, ..., u) = F(u). 

To do this, we need only choose a suitable function Gi+1/2, for instance, as 
in [6], 

( 10.2) Gi+112(t) = F(u i+ I (t)) + U, (u i () * (gi+ 1/2( ) - f (Ui+ I (W))X 

which gives 

dt U(ui(t)) + B1 (G+)/2(t) - 
Gi-112(t)) 

=5X| U (u).(gi12(t)- f(u))du. 

This reduces the problem of convergence to the entropy solution to the compu- 
tation of an integral. 

Remark. The entropy (10.1), with (10.2), allows us to obtain directly, as in 
[12], the convergence of the fully discrete implicit scheme associated with (1.4). 

To verify the entropy inequality associated with the two-point upstream 
weighting scheme, we choose U(u) = u2/2. The relation of consistency with 
the entropy condition associated with U(u) becomes (with f increasing for 
instance): 

. 1+1 

(10.3) f (f(ai+1/2) - f(u)) du < 0. 

Hence, the proof of Theorem 9.1 consists in finding a suitable correction by 
means of a slope limiter [10] to enforce ui+1/2 to satisfy the above inequality, 
for instance, as in [6]. But it is worth noticing that the correction used is entirely 
independent of the space step. E 
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PART III. NUMERICAL RESULTS 

To illustrate the two-point upstream weighting scheme, we apply this scheme 
to the resolution of the Buckley-Leverett equation, which represents the dis- 
placement of an incompressible two-phase flow in a porous medium. The flux 
function f (u) represents the so-called fractional flow, relating the mobility of 
displacing fluid to the total fluid mobility. 

Numerical tests have been done, considering a high-mobility ratio displace- 
ment, which could give some numerical instabilities. We consider f(u) = 

20u3/(20u3 + (1 - u)3), which describes the displacement of two immiscible 
fluids with cubic relative permeability and a viscosity ratio of 20. 

We compare below the solutions of the Riemann problem (with initial data 
uO(x) = 1 if x < 0, and 0 if x > 0) computed by the two-point upstream 
weighting explicit scheme and the Van Leer explicit scheme (other comparsions 
can be found in [10], especially between implicit versions of these schemes). 

Figure 3 shows the solutions computed by the two schemes are very close; 
but we notice that the two-point upstream weighting scheme is slightly more ef- 
fective than the Van Leer scheme in describing the shock front and less accurate 
in computing the rarefaction wave. In order to compare more easily the two 
schemes, we still give in Figures 4 and 5 the corresponding algebraic difference 
between the analytic solution and the computed solutions. 

1.00 ^F....1 A 

Analytic solution 

T.P.U.W. scheme 
0.90 

Van Leer scheme Ag 
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0.60 

0.40 
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FIGURE 3 
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